Veronica Barassi

科技公司对您的孩子了解多少

人类学家Veronica Barassi说,您和您的家人每天使用的数字平台-从在线游戏到教育应用程序和医疗门户-可能正在收集和出售孩子的数据。 巴拉西(Barassi)分享了她大开眼界的研究成果,并敦促父母们对数字条款和条件进行三番审视,而不是一味地接受它们,并要求采取保护措施,以确保孩子的数据不会歪曲他们的未来。

作者:Veronica Barassi

时间:2019年11月

前往 TED 观看视频

标签:

每一天, 每一个星期,我们都会同意各种服务条款。

每当我们这样做,我们其实就赋予了公司法律上的权利,用我们的数据去做任何事,也包括我们孩子的数据。

这难免使我们感到困惑:我们到底提供了多少关于孩子的数据,它们的用途又是什么?

我是个人类学家,也是两个女孩的母亲。

2015 年,我开始关注这个问题,当时我突然发现很多科技公司从孩子那里搜集到了庞大到无法想象的数据信息。

所以我启动了一个研究项目,叫“儿童数据市民”,希望能够填补空缺的信息。

现在,你们有可能以为我在责怪你们在社交网络上传了孩子的照片,但是这不是重点。

实际问题比分享要严重得多。

这事关系统,而不是个人。

你的行为习惯并没有错。

历史上首次,我们开始追踪孩子的个人数据,从他们出生之前——有时候是从受孕开始,然后贯穿他们的一生。

通常,当家长决定要一个孩子,他们会在网上搜索 “怎么怀孕”,或者下载排卵期追踪软件。

等到真的怀孕了,他们会在社交网络上发布宝宝的超音波图像,下载关于怀孕的软件,或者在谷歌上搜索相关信息。

比如,“乘飞机时的流产风险”或者“怀孕早期的腹痛”。

我知道这些,因为我也有过类似的经历,而且是很多次。

等到宝宝出生后,他们会用不同的技术记录每个午觉、每次喂食和每个重要时刻。

所有这些技术都会通过把宝宝的资料分享给别人从而换取利润。

先给各位举一个例子,在 2019 年,英国医学杂志发布了一项研究:在 24 个健康类的手机软件里, 有 19 个把用户资料分享给了第三方,而这些第三方又分享给了216 个其他的组织。

而这 216 个第四方机构,只有三个属于健康类机构,其他的则是大型科技公司,比如谷歌,脸书或甲骨文, 都是数据广告类的公司,而且还有消费信贷的报告机构。

所以你的猜测是对的:广告公司和信贷机构已经有了宝宝们的数据。

但是手机软件、网站搜索和社交媒体只是冰山一角,因为孩子们的日常生活已经被很多科技追踪了。

他们被家里的设备和虚拟助手追踪,他们被教育网站和学校里的教育技术追踪。

他们被诊所的网上记录和门户网站追踪。

他们也在被连网的玩具、在线游戏和很多很多其他的技术追踪。

在我的研究过程中,很多家长问我,“那又怎么样?就算我的孩子被追踪,那又怎么样?我们又没什么见不得人的秘密。”

但是,这真的很重要。

因为现如今,个人信息不仅仅被追踪,还会被用来创建网络个人档案。

那些公司会用人工智能和预测分析从不同渠道搜集越来越多的个人数据:家庭历史、购物习惯和社交媒体评论, 然后将这些信息结合在一起去做出关于你的决定。

这些技术几乎无处不在。

银行利用这些信息决定批准谁的贷款,保险公司用它们决定保费额度,招聘人员和雇主用它们来决定你们到底适不适合某个工作。

警察和法庭也利用它们去决定这个人是不是罪犯,或者有没有可能犯罪。

这些购买、售卖和处理我们信息的人究竟如何调查我们和我们的孩子,我们对此一无所知,也没有任何控制权。

但这些信息会严重影响我们的权益。

举个例子,2018 年《纽约时报》发布的一则新闻称,由线上大学规划服务搜集的数据—— 这些数据都来自全美数百万正在寻找大学项目或奖学金的高中生——已经被售卖给了教育数据经纪人。

福特汉姆的研究人员在对一些教育数据经纪人进行分析之后透露,这些公司根据以下类别对不小于两岁的孩子进行了分组: 种族、宗教、家庭富裕程度、社交恐惧症,以及很多其他的随机分类。

然后他们会将这些资料,以及孩子的名字、地址和联系方式出售给不同的公司,包括贸易和职业发展机构,学生贷款和学生信用卡公司。

更夸张的是,研究人员要求教育数据经纪人提供一份对家庭生育服务感兴趣,年龄在 14 至 15 岁的少女名单。

数据经纪人同意了。

所以不难想象,我们孩子的隐私得到了何等程度的侵犯。

但是教育数据经纪人的例子只是冰山一角。

诚然,孩子们的信息正以不可控的方式被人操纵着,但这会极大地影响他们以后的人生。

所以我们要扪心自问:这些搜集孩子们信息的技术还值得信任吗?值得吗?

我的答案是否定的。

作为一个人类学家,我相信人工智能和预测分析可以很好的预测疾病的发展过程或者对抗气候变化。

但是我们需要摒弃这些技术可以客观的分析人类数据,我们能够以数据为依据做出关于个人生活的决定这一想法。

因为它们做不到。

数据无法反映我们的真实情况。

人类往往心口不一,言行不一。

算法预测或者数据实践无法应对人类经验的不可预测性和复杂性。

但是在此之上,这些科技总是——总是——以这样或那样的方式存在偏见。

要知道,算法的定义是被设计成实现一个具体结果的,很多套规则或步骤,对吧?

但是这些都不是客观的,因为它们都是由带有特殊文化背景,被特殊文化价值所塑造的人类设计出来的。

所以当机器在学习的时候,它们利用的是带有偏见的算法,以及往往同样带有偏见的数据。

如今,我们已经看到了第一批算法偏见的例子,其中有一些真的很可怕。

今年,位于纽约的人工智能现在研究所(AI Now Institute)发表的一份报告揭示了预测警务领域的人工智能技术是使用非常糟糕的数据进行训练的。

这些数据基本上都是在历史上存在已知的种族偏见和不透明的警察行为时期收集的数据。

因为这些技术都是用这类数据训练的,它们无法做到客观,结果只是放大和进一步深化警察的偏见和错误。

所以我觉得我们是在面对社会中的一个基本问题。

我们正在放心大胆的用各种技术对人类信息进行分析。

我们知道在这方面,这些技术总是有偏见的,结果也永远不可能准确。

所以我们现在需要一个政治层面的解决方案。

我们需要让政府认识到,我们的数据权利也是人权。

(鼓掌和欢声)

在这样的转变发生之前,我们无法期待一个更加公平的未来。

我担心我的女儿们会暴露在各种算法的歧视与错误判断中。

我和我女儿的区别就在于,我的童年并没有公开的记录,当然,我十几岁时做过的傻事和那些荒唐的想法也没有被记录。

(笑声)

但是我的女儿们就不同了。

今天从她们那里搜集的数据在将来有可能被用来评判她们的未来,并可能阻止她们的希望和梦想。

我觉得是时候了,是时候采取行动——无论是个人,还是组织和机构——在一切还来得及之前就开展合作,为我们和我们的孩子争取更大程度的数据公正。

谢谢大家!

(掌声)